Abstract

Word length is one of the main determinants of eye movements during reading and has been shown to influence slow readers more strongly than typical readers. The influence of word length on reading in individuals with different reading skill levels has been shown in separate eye-tracking and electroencephalography studies. However, the influence of reading difficulty on cortical correlates of word length effect during natural reading is unknown. To investigate how reading skill is related to brain activity during natural reading, we performed an exploratory analysis on our data set from a previous study, where slow reading (N = 27) and typically reading (N = 65) 12-to-13.5-year-old children read sentences while co-registered ET-EEG was recorded. We extracted fixation-related potentials (FRPs) from the sentences using the linear deconvolution approach. We examined standard eye-movement variables and deconvoluted FRP estimates: intercept of the response, categorical effect of first fixation versus additional fixation and continuous effect of word length. We replicated the pattern of stronger word length effect in eye movements for slow readers. We found a difference between typical readers and slow readers in the FRP intercept, which contains activity that is common to all fixations, within a fixation time-window of 50–300 ms. For both groups, the word length effect was present in brain activity during additional fixations; however, this effect was not different between groups. This suggests that stronger word length effect in the eye movements of slow readers might be mainly due re-fixations, which are more probable due to the lower efficiency of visual processing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call