Abstract

The subject of this work was to characterize the catalytic course of the linseed oil silylation reaction with vinyltrimethoxysilane (VTMOS), carried out under elevated pressure and temperature conditions, and an explanation of the reasons for rapid gelation of the reaction product. To explain and describe the process, analytical methods were used, i.e., 1H and 13C NMR (nuclear magnetic resonance), GC-FID (gas chromatography coupled with flame ionisation detection), and GPC (gel permeation chromatography). Reaction products were monitored after 3, 6 and 12 h. The molar mass of the VTMOS-modified oil in only 3 h was comparable with the molar mass of the product obtained by conventional polymerisation. An increase in the reaction time resulted in further transformations resulting from the hydrolysis and condensation reactions taking place. In contrast to reactivity of soybean oil, the silanisation of linseed oil occurred much faster and without the need for cross-linking catalysts. The reason for the high reactivity of linseed oil to VTMOS and rapid gelation of the resulting product was primarily the amount of double bonds present in linseed oil and their high availability, in particular the double bond in the acid linolenic acid located at the C16 carbon.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.