Abstract

Large quantities of cements and concretes need to be incorporated in geological disposal facilities for long-lived radwaste. An alkaline plume diffusing from an aged concrete (pH 12.5) through argillite-type rocks has been modelled considering feedback of porosity value variations on transport properties using the reactive transport code TOUGHREACT. The mineralogical composition of the argillite is modified at the interface with the concrete. Diffusion of cementitious elements leads to rapid and strong porosity occlusion in the argillite. Numerical results show that both reaction rates and spatial refinement affect mineralogical transformation pathways. The variations in porosity and the extension of the zone affected by the alkaline perturbation are compared at different times. The major effects of mineral precipitation under kinetic constraints, rather than local equilibrium, are a delay in the porosity clogging and an increase in the extension of the alkaline perturbation in the clay formation. The same time-delay rise for the porosity occlusion also appears for the roughest spatial resolutions. A simulation as representative as possible of temporal and spatial scales of cementation processes must then be supported by more comparative data such as long term experimental investigations or natural analogues.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.