Abstract

In this work, effects and mechanism analysis of samarium acetate and ytterbium acetate on enhancing the electrochemical corrosion performance of aluminum-based anode for aluminum-air batteries in 3.5 wt.% NaCl are studied by methods such as weight loss tests, electrochemical measurements, anode galvanostatic discharge tests and microscopic morphology analysis. The results show that samarium acetate and ytterbium acetate are ideal electrolyte additives, and exhibit obvious inhibitory effects on the self-corrosion of 7075 aluminum alloy. The optimal concentration is 200 mg/L. Moreover, corrosion inhibitors mainly reduce the self-corrosion speed of aluminum by suppressing the microcathodic reaction, thereby promoting the improvement of the discharge performance of aluminum-air batteries. Simultaneously, it is found that after mixing samarium acetate and ytterbium acetate in different proportions, the two rare earth salts have a mutual adjustment effect. By adding different rare earth salt components, the battery capacity densities of the anode are improved by 9.6% to 16.3%. Finally, a possible model is presented to illustrate the impact mechanism of different additives on the self-corrosion process and discharge performance of aluminum-air batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.