Abstract
This paper deals with a stochastic approach based on the principle of the maximum entropy to investigate the effect of the parameter random uncertainties on the arterial pressure. Motivated by a hyperelastic, anisotropic, and incompressible constitutive law with fiber families, the uncertain parameters describing the mechanical behavior are considered. Based on the available information, the probability density functions are attributed to every random variable to describe the dispersion of the model parameters. Numerous realizations are carried out, and the corresponding arterial pressure results are compared with the human non-invasive clinical data recorded over a mean cardiac cycle. Furthermore, the Monte Carlo simulations are performed, the convergence of the probabilistic model is proven. The different realizations are useful to define a reliable confidence region, in which the probability to have a realization is equal to 95%. It is shown through the obtained results that the error in the estimation of the arterial pressure can reach 35% when the estimation of the model parameters is subjected to an uncertainty ratio of 5%. Finally, a sensitivity analysis is performed to identify the constitutive law relevant parameters for better understanding and characterization of the arterial wall mechanical behaviors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.