Abstract

By solving the higher-order nonlinear Schrödinger equation (NLSE), including Raman gain and self-steepening effect, the influence of the combined effect of Raman gain and self-steepening on the propagation characteristic of soliton pulse is simulated by the software of MATLAB. Results show that self-steepening effect can produce temporal shifts of the soliton and also can lead to the breakup of higher-order solitons through the phenomenon of soliton fission. Meanwhile, the Raman gain changes the propagation characteristic of optical soliton and inhibits the self-steepening effect, resulting in the increase in pulse width, and the decrease in pulse offset. As a result, the required propagation distance for higher-order soliton decaying into fundamental solitons is increased under the condition of Raman gain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.