Abstract

Increasing interactions between spin centers in molecules and molecular materials is a desirable goal for applications such as single-molecule magnets for information storage or magnetic metal-organic frameworks for adsorptive separation and targeted drug delivery and release. To maximize these interactions, introducing unpaired spins on bridging ligands is a concept used in several areas where such interactions are otherwise quite weak, in particular, lanthanide-based molecular magnets and magnetic metal-organic frameworks. Here, we use Kohn-Sham density functional theory to study how much the ground spin state is stabilized relative to other low-lying spin states by creating an additional spin center on the bridge for a series of simple model compounds. The di- and triradical structures consist of nitronyl nitroxide (NNO) and semiquinone (SQ) radicals attached to a meta-phenylene(R) bridge (where R = -NH•/-NH2, -O•/OH, -CH2•/CH2). These model compounds are based on a fully characterized SQ-meta-phenylene-NNO diradical with moderately strong antiferromagnetic coupling. Replacing closed-shell substituents CH3 and NH2 with their radical counterparts CH2• and NH• leads to an increase in stabilization of the ground state with respect to other low-lying spin states by a factor of 3-6, depending on the exchange-correlation functional. For OH compared with O• substituents, no conclusions can be drawn as the spin state energetics depend strongly on the functional. This could provide a basis for constructing sensitive test systems for benchmarking theoretical methods for spin state energy splittings. Reassuringly, the stabilization found for a potentially synthesizable complex (up to a factor of 3.5) is in line with the simple model systems (where a stabilization of up to a factor of 6.2 was found). Absolute spin state energy splittings are considerably smaller for the potentially stable system than those for the model complexes, which points to a dependence on the spin delocalization from the radical substituent on the bridge.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.