Abstract

The quantitative evaluation of fat tissue, mainly for the determination of liver steatosis, is possible by using dual-energy computed tomography. Different photon energy acquisitions allow for estimation of attenuation coefficients. The effect of variation in radiation doses and reconstruction kernels on fat fraction estimation was investigated. A six-probe-phantom with fat concentrations of 0%, 20%, 40%, 60%, 80%, and 100% were scanned in Sn140/100 kV with radiation doses ranging between 20 and 200 mAs before and after calibration. Images were reconstructed using iterative kernels (I26,Q30,I70). Fat fractions measured in dual-energy computed tomography (DECT) were consistent with the 20%-stepwise varying actual concentrations. Variation in radiation dose resulted in 3.1% variation of fat fraction. Softer reconstruction kernel (I26) underestimated the fat fraction (-9.1%), while quantitative (Q30) and sharper kernel (I70) overestimated fat fraction (10,8% and 13,1, respectively). The fat fraction in DECT approaches the actual fat concentration when calibrated to the reconstruction kerneö. Variation of radiation dose caused an acceptable 3% variation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call