Abstract

Twenty Pelibuey×Katahdin ewes (35±2.3 kg) were used to determine the effects of the consumption of standardized plant extract containing a mixture of quaternary benzophenanthridine alkaloids and protopine alkaloids (QBA+PA) on growth performance, dietary energetics, visceral mass, and ruminal epithelial health in heat-stressed ewes fed with a high-energy corn-based diet. The basal diet (13.9% crude protein and 2.09 Mcal of net energy [NE] of maintenance/kg of dry matter) contained 49.7% starch and 15.3% neutral detergent fiber. Source of QBA+PA was Sangrovit RS (SANG) which contains 3 g of quaternary benzophenathridine and protopine alkaloids per kg of product. Treatments consisted of a daily consumption of 0 or 0.5 g SANG/ewe. Ewes were grouped by weight and assigned to 10 pens (5 pens/treatment), with two ewes per pen. The experimental period lasted 70 days. The mean temperature humidity index during the course of this experiment was 81.7±1.0 (severe heat stress). There were no treatment effects on water intake. Dry matter intake was not affected (p = 0.70) by treatments, but the group fed SANG had a numerically (11.2%) higher gain in comparison to the control group, SANG improved gain efficiency (8.3%, p = 0.04), dietary NE (5.2%, p<0.01) and the observed-to-expected NE (5.9%, p<0.01). Supplemental SANG did not affect (p≥0.12) carcass characteristics, chemical composition of shoulder, and organ weights (g/kg empty body weight) of stomach complex, intestines, and heart/lung. Supplemental SANG decreased liver weight (10.3%, p = 0.02) and increased visceral fat (16.9%, p = 0.02). Rumen epithelium of ewes fed SANG had lower scores for cellular dropsical degeneration (2.08 vs 2.34, p = 0.02), parakeratosis (1.30 vs 1.82, p = 0.03) and neutrophil infiltration (2.08 vs 2.86, p = 0.05) than controls. It is concluded that SANG supplementation helped ameliorate the negative effects of severe heat on growth performance of feedlot ewes fed high-energy corn-based diets. Improvement in energetic efficiency may have been mediated, in part, by anti-inflammatory effects of supplemental SANG and corresponding enhancement of nutrient uptake.

Highlights

  • Heat stress negatively affects daily weight gain and/or feed efficiency of feedlot cattle

  • QBA+PA supplementation decreased ruminal ammonia N concentration (Plascencia and Zinn, 2014). All these effects are advantageous for ruminants under heat stress; research of the potential of QBA+PA as feed additives for cattle is limited and there is no information available on the effects of QBA+PA supplementation in finishing ruminants under conditions of severe ambient heat load. The aim of this experiment was to evaluate the effects of inclusion of standardized plant extract containing QBA+PA on growth performance, dietary energy, carcass traits and health of the ruminal epithelium in feedlot ewes fed finishing high-energy diets under conditions of severe temperature-humidity index

  • All animal management procedures were conducted within the guidelines of locally-approved techniques for animal use and care

Read more

Summary

INTRODUCTION

Heat stress negatively affects daily weight gain and/or feed efficiency of feedlot cattle. QBA+PA supplementation decreased ruminal ammonia N concentration (Plascencia and Zinn, 2014) All these effects are advantageous for ruminants under heat stress; research of the potential of QBA+PA as feed additives for cattle is limited and there is no information available on the effects of QBA+PA supplementation in finishing ruminants under conditions of severe ambient heat load. The aim of this experiment was to evaluate the effects of inclusion of standardized plant extract containing QBA+PA on growth performance, dietary energy, carcass traits and health of the ruminal epithelium in feedlot ewes fed finishing high-energy diets under conditions of severe temperature-humidity index.

MATERIALS AND METHODS
Yellow grease
RESULTS AND DISCUSSION
Gain for feed
Dressing percentage
Stomach complex
It is concluded that SANG supplementation helped
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call