Abstract

Numerical simulation based on the Princeton Ocean Model (POM) was performed for a region of the Southeast Baltic in order to compare data on the spatial distribution of velocity and bottom sediments. Special attention was focused on the influence of western and northeastern winds, which generate intense quasi-geostrophic currents can may cause very high velocities in the near bottom layer, which results in the elution of bottom sediments and transport of their fine fractions. An abrupt change in wind velocity intensifies the effect of elution due to generation of inertial internal waves that penetrate into the bottom layer. The spatial distributions of the velocity in the surface and near bottom layers are compared with data on bottom sediments. It turned out that areas with the highest velocities that formed under the effect of western and northeastern winds in most cases coincide with areas where bottom sediments are represented by coarse-grain fractions of gravel and sands.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.