Abstract

Two-group posttest-only comparison. To assess the influence of the Q-angle on the 3-dimensional lower-extremity kinematics during running. An excessive Q-angle has been implicated in the development of knee injuries by altering the lower-extremity locomotion kinematics. Previous investigations using 2-dimensional analyses during walking did not support this hypothesis. We hypothesized that individuals with Q-angles more than 15 degrees would display an increase in rearfoot eversion and tibial internal rotation during running. Thirty-two nonimpaired subjects (men: n = 16, mean age = 22 +/- 3 years; women: n = 16, mean age = 23 +/- 3 years) ran over ground, and 3-dimensional kinematic data were collected from the right lower extremity. Subjects with a Q-angle of 15 degrees or less comprised the low-Q-angle group, whereas those with Q-angles of more than 15 degrees comprised the high-Q-angle group. Segment and joint maximum angles and the times when the maxima occurred during stance were measured. The Q-angle magnitude did not increase the maximum segment or joint angles during running. The groups displayed similar maximum angles for rearfoot eversion (low Q-angle, -15.5 +/- 5.0 degrees; high Q-angle, -15.6 +/- 6.6 degrees) and tibial internal rotation (low Q-angle, -8.8 +/- 4.8 degrees; high Q-angle, -6.8 +/- 5.1 degrees). The high-Q-angle group (39.5 +/- 16.3%) achieved maximum tibial internal rotation later in the stance phase than the low-Q-angle group (28.8 +/- 10.7%). In support of the previous investigations involving Q-angle influences on kinematics, our study did not reveal any differences between groups in maximum joint or segment angles. The kinematic information did reveal that the high-Q-angle group displayed an increase in time to maximum tibial internal rotation. The impact of this single factor on producing knee injury is unknown.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call