Abstract
Nanocomposites of conjugated polymers polypyrrole (PPy) and polyvinyl chloride (PVC) as matrices and 1,4-phenylenediamine (PDA) as a linker with amine functional graphite (FG-NH2) as filler have been efficiently fabricated using in situ oxidative polymerization, and the effect of various mass ratios on physicochemical characteristics of prepared nanocomposite was investigated. The layer-by-layer oxidative polymerization of various matrices on host filler surface is confirmed by Fourier transform infrared, energy dispersive X-ray, and X-ray photoelectron spectroscopy examinations. Field emission scanning electron microscopy revealed fibrillary morphology of obtained nanocomposites. Thermal stability, glass transition temperature, and melting and crystallization temperature of the nanocomposites were increased with the incorporation of modified graphite. Brunauer–Emmett–Teller analysis explored the improved adsorption capacity (128 cm3g−1) of the nanocomposite with higher feeding ratio of pyrrole. The influence of FG-NH2and pyrrole on electrical conductivity performance of composites was also investigated. Functionalized graphite in the resultant PPy/PVC/PDA@FG-NH2nanocomposites played an important role in forming conducting network in PPy matrix indicating synergistic effect between PPy and FG-NH2.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.