Abstract
Biochars form recalcitrant carbon and increase water and nutrient retention in soils; however, the magnitude is contingent upon production conditions and thermo-chemical conversion processes. Herein we aim at (i) characterizing switchgrass (Panicum virgatum L.)-biochar morphology, (ii) estimating water-holding capacity under increasing ratios of char: soil; and, (iii) determining nutrient profile variation as a function of pyrolysis conversion methodologies (i.e. continuous, auger pyrolysis system versus batch pyrolysis systems) for terminal use as a soil amendment. Auger system chars produced at 600°C had the greatest lignin portion by weight among the biochars produced from the continuous system. On the other hand, a batch pyrolysis system (400 °C – 3h) yielded biochar with 73.10% lignin (12 fold increases), indicating higher recalcitrance, whereas lower production temperatures (400 °C) yielded greater hemicellulose (i.e. greater mineralization promoting substrate). Under both pyrolysis methods, increasing biochar soil application rates resulted in linear decreases in bulk density (g cm-3). Increases in auger-char (400 °C) applications increased soil water-holding capacities; however, application rates of >2 Mt ha-1 are required. Pyrolysis batch chars did not influence water-holding abilities (P>0.05). Biochar macro and micronutrients increased, as the pyrolysis temperature increased in the auger system from 400 to 600 °C, and the residence time increased in the batch pyrolysis system from 1 to 3 h. Conversely, nitrogen levels tended to decrease under the two previously mentioned conditions. Consequently, not all chars are inherently equal, in that varying operation systems, residence times, and production conditions greatly affect uses as a soil amendment and overall rate of efficacy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.