Abstract
Aortic stiffness is associated with a higher incidence of cardiovascular events including stroke. The primary aim of this study was to evaluate whether increased pulse wave velocity (PWV), a marker of stiffness, is an independent predictor of aortic atheroma. The secondary aim was to test whether increased PWV reinforces retrograde blood flow from the descending aorta (DAo), a mechanism of stroke. We performed a cross-sectional case-control study with prospective data acquisition. In all, 40 stroke and 60 ophthalmic patients matched for age and cardiovascular risk factors were included. Multicontrast magnetic resonance imaging (MRI) protocol of the aorta tailored to allow a detailed plaque analysis using 3-dimensional (D) T1-weighted bright blood, T2-weighted and proton density-weighted black blood, and hemodynamic assessment using 4D flow MRI was applied. Individual PWV was calculated based on 4D flow MRI data using the time-to-foot of the blood flow waveform. The extent of maximum retrograde blood flow from the proximal DAo into the arch was quantified. PWV was higher in stroke patients compared with controls (7.62±2.59 vs. 5.96±2.49 m/s; P=0.005) and in patients with plaques (irrespective of thickness) compared with patients without plaques (7.47±2.89 vs. 5.62±1.89 m/s; P=0.002). Increased PWV was an independent predictor of plaque prevalence and contributed significantly to a predictor model explaining 36.5% (Nagelkerke R2) of the variance in plaque presence. Maximum retrograde flow extent from the proximal DAo was not correlated with PWV. Aortic stiffness was higher in stroke patients and associated with a higher prevalence of plaques. Increased PWV was an independent predictor of plaque presence. Accordingly, regional PWV seems to be a valuable biomarker for the assessment and management of aortic atherosclerosis. However, no association was found for increased retrograde flow extent from the DAo.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.