Abstract
Excitation in quantum dots is an important phenomenon. Realizing the importance we explore the excitation kinetics of a repulsive impurity doped quantum dot induced by an electromagnetic pulsed field of various pulse shapes. The pulsed field has been applied along both x and y directions to the doped quantum dot. The impurity potential has been assumed to have a Gaussian nature. The investigation reveals the sensitivity of the typical shape of the pulse, alongside the influences of dopant location and number of pulse towards modulating the excitation rate. At first we have concentrated on understanding the role of number of pulses fed into the system on the kinetics at three fixed dopant locations. Next, we have given our thrust in analyzing the exclusive role of dopant location on excitation kinetics at a fixed pulsed number. In both the cases the typical pulse shapes announce its role on excitation kinetics unhesitatingly through a number of observations. The present study has also indicated enough evidence of change in the mutual dominance of several factors that could favor and impede excitation accompanying the shift of dopant location. Importantly, those factors also depend severely on the pulse shape. The pulse shape interferes delicately with the interplay between impurity location and number of pulses fed into the system and emerges as an important ingredient that can engineer the excitation kinetics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.