Abstract

Owing to their harmful effects on human health, the presence of carbonyl compounds in e-cigarette aerosols raises concerns. To date, the reported concentration levels in e-vapors vary greatly between studies and several factors that markedly influence carbonyl emission during vaping have been highlighted including the heating temperature, the power supply, the device architecture, the filling level of the tank and the main e-liquid constituents. This study investigated the impact of puffing regimen parameters on the carbonyl composition of e-cigarette aerosols with the aim of: (1) better estimating the variability of carbonyl emissions depending on puffing conditions; (2) highlighting puffing profiles that increase the exposure to carbonyls; and (3) estimating to what extent puffing topography could be implied in the variability of carbonyl concentrations reported in the current literature. E-vapors from a single e-liquid were generated from two e-cigarette models with a smoking machine. A total of 7 different puffing regimens were used to individually study the influence of the puff volume, duration and frequency. Carbonyls were collected by DNPH cartridges and analysed by HPLC-UV. E-liquid consumption and e-vapor temperature were also monitored. E-vapor concentrations of formaldehyde, acetaldehyde, acetone, acrolein, propionaldehyde and methylglyoxal were affected, sometimes differently, by the modification of the puffing regimen, as well as by the e-cigarette model. For example, formaldehyde concentration ranged from 20 to 255 ng/puff depending on the puffing conditions. The results of principal component analyses, applied to the concentration data sets for the 6 carbonyls, suggest that the studied parameters interact and highlight some "carbonyl-emitting" combinations of concern (e-cigarette model/puffing regimen). However, the highest concentrations measured in the present study remain far lower than those observed in conventional cigarette mainstream smoke. This study confirms that the chosen puffing regimen contributes a part of the observed variability in the carbonyl levels reported in the scientific literature, hampering comparisons between studies and making interpretation difficult. Thus, harmonized and realistic protocols for the assessment of e-cigarette toxicity by physicochemical or experimental approaches are clearly needed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.