Abstract

Octasubstituted zinc tetrapyrazinoporphyrazines with four N,N-dimethylaminophenyls and four phenyl or pyridin-3-yl substituents were synthesized and fully characterized. Their fluorescence quantum yields in DMF or pyridine were very low, almost undetectable, as a consequence of ultrafast intramolecular charge transfer. Titration of their DMF solutions with sulfuric acid led to increase of the fluorescence quantum yields by two orders of magnitude when the full protonation of peripheral substituents was achieved. Intramolecular charge transfer is no longer a favorable way of excited-state relaxation at full protonation of N,N-dimethylaminophenyl substituents because of loss of donor centers (free electron pair on its nitrogen). Similarly, singlet oxygen quantum yields also increased by two orders of magnitude when sulfuric acid was added to tetrapyrazinoporphyrazine solutions in DMF. Protonation at azomethine nitrogens of tetrapyrazinoporphyrazine macrocycle was observed at higher acid concentrations and it led to considerable decrease of fluorescence quantum yields. Octaphenyl zinc tetrapyrazinoporphyrazine and octa(pyridin-3-yl) zinc tetrapyrazinoporphyrazine were used as controls without intramolecular charge transfer. Their fluorescence and singlet oxygen quantum yields were high in DMF and decreased at higher concentrations of sulfuric acid due to protonation of azomethine nitrogens. The results suggest that the photophysical and photochemical properties of studied compounds may be controlled by changes of pH of medium.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call