Abstract

The catalytic dry reforming of plastic waste is conducted in two-stage fixed bed reactors. The pyrolysis of polypropylene plastics occurs in the first reactor, and the pyrolyzed gases undergo a reforming reaction with carbon dioxide over a catalyst in the second reactor. The wet impregnation method is used to synthesize Ru–Ni/Al2O3 catalysts, which are then calcined and reduced at 800 °C. The results show that as the nickel loading increases, the syngas production increases. Promoting the catalyst with a small quantity of ruthenium significantly improves the plastic conversion into syngas. The dry reforming of polypropylene over 1Ru15Ni/Al2O3 catalyst resulted in the maximum syngas yield (159 mmolsyngas/gPP) at a 2:1 plastic to catalyst ratio. The catalytic dry reforming of plastics is promising for the production of synthesis gas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.