Abstract

In this paper we report the results of an extensive experimental kinetic study carried out on the novel ethylene trimerization catalyst system, comprising the chromium source [CrCl(3)(thf)(3)] (thf=tetrahydrofuran), a Ph(2)P-N(iPr)-P(Ph)-N(iPr)H (PNPNH) ligand (Ph=phenyl, iPr=isopropyl), and triethylaluminum (AlEt(3)) as activator. It could be shown that the initial activity shows a first-order dependency on the ethylene concentration. Also, a first-order dependency was found for the catalyst concentration. The initial activity follows a typical Arrhenius behavior with an experimentally determined activation energy of 52.6 kJ mol(-1). At elevated temperatures (ca. 80 degrees C), a significant deactivation was observed, which can be tentatively traced back to a ligand rearrangement in the presence of AlEt(3). After a fast initial phase, a pronounced 'kink' in the ethylene-uptake curve is observed, followed by a slow, almost linear, further increase of the total ethylene consumption. The catalyst composition, in particular the ligand/chromium and the cocatalyst/chromium molar ratio, has a strong impact on the catalytic performance of the trimerization of ethylene.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.