Abstract

Materials with ultrafine grain structure and unique physical and mechanical properties can be obtained by methods of severe plastic deformation, which include asymmetric rolling processes. Asymmetric rolling is a very effective way to create ultrafine grain structures in metals and alloys. Since the asymmetric rolling is a continuous process, it has great potential for industrial production of ultrafine grain structure sheets. Basic principles of asymmetric rolling are described in detail in scientific literature. Focus in the well-known works is on the possibility to control the structure of metal sheets. However the systematic data on the influence of the process parameters (e.g., ratio of rolls velocity mismatch, reduction per pass, friction and diameter of rolls), and the shear strain rate required to achieve a significant grain refinement in asymmetric rolling are lacking. The influence of ratio of rolls velocity mismatch, reduction per pass, friction and the rolls diameter on the distribution of shear strain through the sheet thickness in asymmetric rolling has been studied in DEFORM 2D. The results of the study will be useful for the research of evolution of ultrafine grain structure in asymmetric rolling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call