Abstract

Electrically conductive nitrogen‐doped hydrogenated carbon films (a‐C:H:N) were deposited using a nitrogenacetylene gas mixture by plasma‐assisted chemical vapor deposition (PACVD). A capacitively coupled plasma beam source was used for the depositions. The plasma is excited by a radio‐frequency (RF) discharge and confined by Helmholtz magnetic coils, resulting in an increase in plasma density. The ion energy, as well as the deposition rate, can be controlled by the choice of the size of the coupling electrode, i.e. the ratio of cathode-to‐anode area, the electric current at the Helmholtz magnet coils, the total gas pressure and the RF power. The interdependence of these process parameters on the ion energy and the deposition rate has been studied in detail in this work. Hardness and electrical resistivity were measured on the deposited a‐C:H:N films.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.