Abstract

Zr-based bulk metallic glasses offer a unique combination of hardness, high strength, and high elastic limits. Yet, manufacturable size and complexity are limited due to the required cooling rates. Short laser-material interaction times together with layer-wise and selective energy input allows the laser powder bed fusion process to largely overcome those restrictions. Still, the complex process-material interactions inhere numerous uncertainties. In the present work, additively manufactured Zr-based bulk metallic glasses produced under three different process gases are investigated by calorimetry, x-ray diffraction, and bending tests. A strong dependence between the thermophysical properties, flexural strength, and the applied atmosphere is found.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.