Abstract

Focus is on comparing stochastic, process-based and deterministic methods for modelling heterogeneity in hydraulic properties of fluvial geothermal reservoirs. Models are considered a generalized representation of a fluvial sequence in the upper part of the Gassum Formation in northern Denmark. Two ensemble realizations of process-based and stochastic heterogeneity were simulated using the state-of-the-art numerical modelling software, Delft Advanced Research Terra Simulator (DARTS), to assess differences on a statistically relevant sample size. Simulator settings were optimized to achieve two orders of magnitude improvement in simulation time. Our general findings show that the stochastic and process-based methods produce nearly identical results in terms of predicted breakthrough time and production temperature decline for high net-to-gross ratios (N/G). Simple homogenous and layered models overestimate breakthrough and underestimate temperature decline. More complex representation of facies in process-based models show smaller variance in results and stay within the limits of ensemble runs compared to simpler facies representation. Results indicate that a multivariate Gaussian based stochastic representation of heterogeneity provides comparable thermal response to a process-based model in fluvial systems of similar quality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.