Abstract

The effect of pressure on the retention behavior of insulin variants in RPLC on a YMC-ODS C18 column was investigated under linear conditions. The retention factors of these variants increase nearly 2-fold when the average column pressure is increased from 55 to 250 bar while their separation factors remain nearly unchanged. This effect is explained by a change of the partial molar volume of the insulin variants associated with their adsorption that decreases from -99 to -80 mL/mol for mobile-phase concentrations of acetonitrile increasing from 29 to 33% (v/v). This volume change is much larger than the one observed with low molecular weight compounds. For the same pressure variation, the average number Z of acetonitrile molecules displaced from the protein and the stationary phase upon adsorption increases from 22 to 23.3. The pressure-induced relative increase of the term b[S]/[D0]z (which corresponds to the initial slope of the adsorption isotherm) is approximately twice as large for Lispro than for porcine insulin. Because the binding constant of insulin decreases with increasing pressure, this suggests that the number of binding sites on the stationary phase increases even faster. Finally, it was observed that the column efficiency at flow rates higher than 0.6 mL/min increases slightly with increasing pressure. It is suggested that these observations are also valid for other proteins analyzed in RPLC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.