Abstract
AbstractNatural gas hydrates are mainly stored in the pores of the sedimentary layer in permafrost regions, and the formation characters in porous media were particularly important for the exploitation and utilization of natural gas hydrates. So, it is essential to understand the formation process of methane hydrate in porous media below freezing point. In this study, the formation process of methane hydrate was studied in a closed system in porous media below freezing point. The results indicated that the initial pressure played an important role in the formation characteristics of methane hydrate in porous media below freezing point. The higher the initial pressure was, the larger the formation rate of methane hydrate. And the maximum formation rate attained 6.46 × 10−4 mol/h when the initial pressure was 9.0 MPa under the same temperature and particle size conditions. Furthermore, the final conversion rate was larger at higher initial pressure and the final conversion rate attained 56.5% at an initial pressure of 9.0 MPa. Furthermore, the pressure disturbance could improve the formation process of methane hydrate and the final conversion rate was larger to some extent. The relevant results will provide a theoretical reference for natural gas hydrates exploitation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.