Abstract

The influence of pressure on the itinerant electron metamagnetic (IEM) transition has been investigated for a La(FexSi1−x)13 compound. The critical temperature T0 defined as the disappearance point of the IEM transition decreases with increasing hydrostatic pressure. Since the pressure dependence of T0 is smaller than that of TC, the temperature range for appearance of the IEM transition becomes wider with increasing hydrostatic pressure. These results are consistent with the theoretical model based on the Landau expansion of free energy including the influence of spin fluctuations and the magnetovolume effect. On applying pressure, the critical field Bc for the IEM transition increases proportionally with temperature in low pressures, whereas it exhibits a quadratic temperature dependence with lowering the Curie temperature in high pressures. The change in the temperature dependence of Bc is explained by a change in the thermal growth rate of spin fluctuations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call