Abstract

Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is the most commonly investigated conductive polymer due to its unique thermoelectric properties. Several post treatments using various acids have been reported to improve the thermoelectric properties of PEDOT:PSS. In most articles, however, only the role of acids on the structure and thermoelectric properties of PEDOT:PSS were reported. In this article, we report the major role of the pressure of nitrogen gas (N2) on the structure and thermoelectric properties of PEDOT:PSS after treatment with various acids at optimized temperatures. After treatment with acids followed by N2 gas-passing, electrical conductivity enhances significantly. Therefore, N2 gas-passing after acid treatments results in higher thermoelectric properties than other traditional acid treatment methods. The enhancement in electrical conductivity is attributed to the removal of insulating PSS and the conformational change of the PEDOT chain. Furthermore, the pressure of N2 is responsible for the additional conformation of PEDOT chain, favoring the linear orientation of the PEDOT structure and resulting in an improvement of the electrical conductivity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call