Abstract

This study aims to reveal the internal damage evolution process in a transparent ethylene propylene diene rubber (EPDM) under high-pressure hydrogen cycles (9 and 15 MPa). Damage accumulation of EPDM was tracked from in-situ pictures during cycling. Several dedicated image processing routines allowed the discrimination of mechanisms (separated cavities, clusters and cracks) and sometimes the qualification of their morphology (size distribution, number, ratio of cavities reappearing at any cycle). Numerous small cavities were observed at any cycle, some of them being clustered under the highest pressure. Only part of them systematically appeared again. Some of these cavities inflated and “absorbed” small cavities around them when clustered. Finally, a few cracks were nucleated from some large cavities and grew, following a “stop and grow” process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.