Abstract

A study of thermal behavior for two-dimensional spin-crossover compounds is performed by using an Ising-like model including both short-range and long-range interactions and a Monte Carlo entropic sampling technique for determining the associated density of states. The effects of various factors, such as external pressure, internal interaction strength or system size, on the thermal transition are analyzed and compared to several experimental findings in this area. The study is focused on two-step transitions and the conditions for hysteresis behavior at each step which are especially important for the potential applications of spin-crossover materials in data storage devices or smart sensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.