Abstract
The deuterium release from reduced activation Eurofer steel samples is investigated by measuring the re-emission directly during ion irradiation and via thermal desorption spectroscopy without contact with air. A part of the experiments are carried out using a sample previously subjected to high-power pulsed thermal action using the QSPA-T setup, Troitsk Institute of Innovative and Thermonuclear Research. Subsequent irradiation is performed using a 5-keV D 3 + ion beam to a fluence of up to 1021 m–2 at room temperature. In all cases, a major part of the implanted deuterium is released from the sample already at the irradiation stage. A significant part of the deuterium also desorbs in the interval between irradiation and spectroscopic measurements. Deuterium re-emission from damaged samples reaches a maximum value more slowly than that from undamaged ones, and deuterium release during holding is more intense. This can be explained by the structure of the damages caused by the heat flux: the hydrogen-trap concentration grows in the material, and the surface area participating in desorption increases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.