Abstract

AbstractContinuous carbon fiber reinforced poly‐ether–ether–ketone (CCF/PEEK) shows great potential in engineering applications attributed to superior mechanical properties together with excellent thermal and chemical resistance. In this study, a laser‐assisted additive manufacturing device was established to accurately collect and control the preheating temperature based on a coaxial infrared temperature measurement system. The influence on laser power consumption, interlaminar shear performance, and failure mechanism was investigated in condition of different preheating temperatures and printing speeds. Results indicated that the laser‐preheated specimens showed much higher ILSS with maximum values and increasing percentage reached 33.48 MPa and 157.0% compared to unpretreated specimens. With the increase of preheating temperature and printing speed, more laser power was consumed, while the ILSS and increasing percentage increased firstly and then decreased. The strengthening effect on the interlayer bonding was ascribed to promoting the penetration of PEEK molecular chain ends between adjacent layers, increasing the fluidity and enhancing the bonding effect between adjacent filament together with improving the impregnation behavior of the inner fibers. The proposed interlaminar strengthening method based on laser‐assisted preheating provides potential application prospects in aerospace and automotive industries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.