Abstract
We investigated the influence of precession angle, energy filtering and sample thickness on the structural parameters of amorphous SiO2 thin films from the electron reduced density functions obtained by applying precession electron diffraction. The results demonstrate that the peak positions in the electron reduced density functions are generally insensitive to the studied experimental conditions, while both precession angle and energy filtering influence peak heights considerably. It is also shown that introducing precession with small angles of up to 2 degrees and energy filtering results in higher coordination numbers that are closer to the expected theoretical values of 4 and 2 for Si and O, respectively, for data obtained from a thicker sample.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.