Abstract

Welding of modified 9Cr–1Mo(V–Nb) steel pipes has been carried out via shielded metal arc (SMA) and tungsten inert gas (TIG) welding processes. The weld joints have been produced using different preheating temperatures, followed by post-weld heat treatment (PWHT) at various temperatures. The microstructures of the weld and of the heat affected zone (HAZ) of the weld joints have been studied under the optical microscope and correlated with the preheating and PWHT. The average hardness of the weld and different regions of the HAZ, and tensile properties of the weld joints have also been studied and correlated with the preheating and PWHT. The tensile properties of the SMA and TIG weld joints produced using preheating and PWHT at various temperatures are compared and correlated with their microstructures. It is noted that a comparatively high preheating temperature of the order of 573 K is beneficial, and PWHT is necessary to reduce the susceptibility to cold cracking of weld joints of the present steel. The PWHT at 1123 K enhances ductility to fracture, but decreases the tensile strength of the base material, causing fracture of both the SMA and TIG weld joints from this region close to the HAZ. The tensile properties of SMA welds are found to be superior to those of the TIG welds, especially for PWHT at temperatures up to 1023 K.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.