Abstract
Time-of-flight neutron diffraction has been used to determine the temperature dependence of the magnetic structure of three binary hexagonal Er–Pr alloys, Er90Pr10, Er80Pr20, and Er60Pr40. In overall agreement with magneto-thermal measurements performed on these compounds, the addition of Pr initially increases the Curie temperature and decreases the Néel temperature, observed at 20 K and 86 K, respectively, for pure Er. The neutron diffraction data for Er90Pr10, however, also clearly show that a ferromagnetic phase, with moments parallel to the c-axis, coexists with modulated structure components, with increasing temperature up to 35 K, above which a pure sine modulated structure sets in up to the Néel temperature at approximately 65 K. A similar behavior is observed for Er80Pr20, where the sine modulated phase is observed to disappear at 48 K. In sharp contrast, only one magnetic phase, identified as ferromagnetic with moments parallel to the c-axis, is observed for Er60Pr40 from low temperatures up to the Curie point at 35 K. The propagation vectors of the sine modulated phases are found to be temperature dependent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.