Abstract

This paper presents experimentally investigated the effects of pozzolan made from various by-product materials on mechanical properties of high-strength concrete. Ground pulverized coal combustion fly ash (FA), ground fluidized bed combustion fly ash (FB), ground rice husk–bark ash (RHBA), and ground palm oil fuel ash (POFA) having median particle sizes less than 11 μm were used to partially replace Portland cement type I to cast high-strength concrete. The results suggest that concretes containing FA, FB, RHBA, and POFA can be used as pozzolanic materials in making high-strength concrete with 28-day compressive strengths higher than 80 MPa. After 7 days of curing, the concretes containing 10–40% FA or FB and 10–30% RHBA or POFA exhibited higher compressive strengths than that of the control concrete (CT). The use of FA, FB, RHBA, and POFA to partially replace Portland cement type I has no significant effect on the splitting tensile strength and modulus of elasticity as compared to control concrete or silica fume concretes. This results suggest that the by-products from industries can be used to substitute Portland cement to produce high-strength concrete without alteration the mechanical properties of concrete.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.