Abstract
Near-infrared (NIR) spectroscopy is a powerful process analytical tool for monitoring chemical constituents in continuous pharmaceutical processes. However, the density variation introduced when quantitative NIR measurements are performed on powder streams at different flow rates is a potential source of a lack of model robustness. Since different flow rates are often required to meet the production requirements (e.g., during scale-up) of a continuous process, the development of efficient strategies to characterize, understand, and mitigate the impact of powder density on NIR measurements is highly desirable. This study focused on assessing the effect of powder physical variation on NIR by enabling the in-line characterization of powder stream density in a simulated continuous system. The in-line measurements of powder stream density were facilitated through a unique analytical interface to a flowing process. Powder streams delivered at various design levels of flow rate and tube angle were monitored simultaneously by NIR diffuse reflectance spectroscopy, live imaging, and dynamic mass characterization. Statistical analysis and multivariate modeling confirmed powder density as a significant source of spectral variability due to flow rate. Besides providing broader process understanding, results elucidated potential mitigation strategies to facilitate effective continuous process scale-up while ensuring NIR model robustness against density.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.