Abstract

Tensile properties and fracture behaviors of silicon rich LM6 aluminum alloy were investigated in details for as cast alloy and modified by LM6 powdery-chip capsules. The obtained results showed that 20% modified LM6 cast composite ensured the excellent tensile properties (tensile strength of 203 MPa with 3.8% elongation). An impressive increase in the elongation (6.8%) was found for 25% modified cast composite with good ultimate tensile strength, 6.2% higher than unmodified (182 MPa). Characterization of the casts and fracture surfaces were carried out to study the effect of reinforcement particles. An influence of un-melted chip structure was observed inside the cavities and on fractured surfaces. The XRD results showed that cast consisted of inter-metallics of AlO2, Al2Si and Al4Si. It was attributed to micro-cracks prevalently propagated along the broken eutectic silicon particles and some rejected solid particles on the fractured surfaces with ductile and inter-granular fracture. Debonding and cracking of silicon particles were also detected on the fractured surface of the specimens.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.