Abstract

The purpose of the study is to determine the effect of nanosized additives on the structure and properties of the T15K6 hard alloy.Methods. These studies were carried out using an S-3400N electron microscope. The mechanical and physical properties of the structure of a hard alloy of the WC-TiC-Co system were studied using the example of T15K6 when nanosized tungsten powder and nanosized tungsten carbide powder with cobalt deposited on it were introduced into the initial charge using an optical and electron microscope; An X-ray spectrum analysis of the obtained samples of the T15K6 hard alloy was carried out on a DRON-4 X-ray diffractometer.Results. A hard alloy of the WC-TiC-Co system was studied with the introduction of nanosized tungsten powder into the initial charge, as well as with the introduction of nanosized tungsten carbide with cobalt deposited on its surface.In the work, the used powders of tungsten, nano-tungsten, cobalt, titanium carbide, tungsten carbide, nano-powder of tungsten carbide were studied, and the microstructure of the obtained hard alloys was also studied. It is shown that the coercive force of the T15K6 alloy depends on the size of the cobalt phase regions in the alloy; measuring its value makes it possible to judge the size of carbide grains. To improve the strength properties of hard alloys of the WC-TiCCo system, it is recommended to introduce nanosized WC additives or WC nanopowder with deposited cobalt.Conclusion. To improve the strength properties of hard alloys of the WC-TiC-Co system, it is recommended to introduce nanosized WC additives or WC nanopowder with deposited cobalt. The introduction of these additives into the composition of the powder charge of the T15K6 hard alloy leads to an increase in the ultimate bending strength by 15%. The introduction of nanosized WC additives or WC nanopowder with deposited cobalt makes it possible to obtain a fine-grained structure with a grain size of no more than 4–6 μm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.