Abstract

The influence of Potamogeton pectinatus colonisation on benthic nitrogen dynamics was studied in the littoral zone of a lowland pit lake with high nitrate concentration (~200 μM). Our hypothesis was that in aquatic environments where nitrogen availability is not limiting, colonisation by rooted macrophytes changes the dynamics of the benthic nitrogen cycle, stimulating N assimilation and denitrification and increasing the system capacity to take up external nitrogen loads. To test this hypothesis, we quantified and compared seasonal variations of light and dark benthic metabolism, dissolved inorganic nitrogen (DIN) fluxes, denitrification and N assimilation rates in an area colonised by P. pectinatus and a reference site colonised by microphytobenthos. In both areas, the benthic system was net autotrophic and a sink for DIN (2,241–2,644 mmol m−2 y−1). Plant colonisation increased nitrogen losses via denitrification by 30% compared to the unvegetated area. In contrast to what is generally observed in coastal marine systems, where the presence of rooted macrophytes limits denitrification rates, under the very high nitrate concentrations in the studied lake, both denitrification (1,237–1,570 mmol m−2 y−1) and N assimilation (1,039–1,095 mmol m−2 y−1) played important and comparable roles in the removal of DIN from the water column.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.