Abstract

The decomposition of submerged macrophytes is generally associated with dramatic changes in the water environment, such as the large release of nutrients (e.g., nitrogen and phosphorus) and organic carbon to the surrounding waters, which may result in significant changes in phytoplankton community structure. In this study, Potamogeton crispus, physicochemical variables, and phytoplankton samples were collected in 14 shallow lakes in the middle and lower Jianghuai Plain in spring (growing period of P. crispus) and summer (decomposition phase of P. crispus) of 2018. The effects of the decline of P. crispus on water quality and phytoplankton community structure were quantified. The results showed that water transparency increased significantly in spring because the growth of P. crispus inhibits sediment resuspension and macrophytes can transport the nutrients from the water column to the sediment. The values of dissolved oxygen and pH also increased significantly due the photosynthesis by macrophytes. In contrast, the decomposition of P. crispus during summer months caused a significant increase in water turbidity and organic matter. There were considerable differences in phytoplankton biomass and cyanobacterial biomass in the sites with or without P. crispus, and the corresponding ratios of cyanobacterial biomass to the total algal biomass were 18.96% and 34.05%, respectively. Higher values of cyanobacterial biomass were observed with the decomposition of P. crispus than its counterpart in summer because ① the decomposition of macrophytes provided sufficient organic matter and nutrient (nitrogen and phosphorus) resources for cyanobacterial growth; ② P. crispus decline in summer significantly increased water turbidity, which makes cyanobacteria occupy a better ecological niche and more efficiently utilize nitrogen and phosphorus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.