Abstract
This study investigates the effects of post-weld heat treatment (PWHT) on the microstructures and mechanical properties of plasma arc-welded 316 stainless steel. The experimental parameters included the solid solution temperatures of 650 °C and 1050 °C, solid solution durations of 1 h and 4 h, and quenching media of water and air. The mechanical properties were evaluated using Vickers hardness testing, tensile testing, scanning electron microscopy (SEM), and optical microscopy (OM). The highest ultimate tensile strength (UTS) of 693.93 MPa and Vickers hardness of 196.4 in the welded zone were achieved by heat-treating at 650 °C for one hour, quenching in water, and aging at 500 °C for 24 h. Heat-treating at 650 °C for one hour, followed by quenching in water and aging at 500 °C for 24 h results in larger dendritic δ grains and contains more σ phase compared to the other conditions, resulting in increased strength and hardness. Additionally, it shows wider and shallower dimple structures, which account for its reduced impact toughness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.