Abstract

The influence of positive slopes on the energy coupling and hydrodynamic responses in an atmospheric nanosecond-pulsed plasma synthetic jet (PSJ) was investigated using a validated dry air plasma kinetics model. Based on a 1D simulation of the energy transfer mechanism in ultrafast gas heating, and with reasonable simplification, a 2D model of a PSJ was developed to investigate the discharge characteristics and hydrodynamic responses under different rise times. In the 1D simulation, a shorter voltage rise time results in a higher electric field in less time, reduces the time of ionization front propagation and produces stronger ionization. The energy transfer efficiency of ultrafast heating is approximately 60% but a steeper positive slope could raise local heating power density and make input energy 77% higher at the cost of 2.4% lower energy transfer efficiency under the same voltage amplitude and pulse width. The quench heating power density is always 27–30 times higher than that of ion collision in most discharge regions, while ion collision heating power density is 10–103 times higher in the sheath region. In 2D PSJ simulation, spatial-temporal distribution of electron density, reduced electric field and deposited energy were calculated for the first time. Heating energy increases sharply with voltage rise time decrease in the time scale of 20–50 ns. Jet velocity increases by 100 m s−1 when the rise time is reduced by 20 ns. A shorter voltage rise time also leads to higher orifice pressure and temperature, but their peak values are limited by the structure of the orifice and the discharge cavity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call