Abstract
Cavitation instabilities have been found for a single void in a ductile metal stressed under high triaxiality conditions. Here, the possibility of unstable cavity growth is studied for a metal containing many voids. The central cavity is discretely represented, while the surrounding voids are represented by a porous ductile material model in terms of a field quantity that specifies the variation of the void volume fraction in the surrounding metal. As the central void grows, the surrounding void volume fractions increase in nonuniform fields, where the strains grow very large near the void surface, while the high stress levels are reached at some distance from the void, and the interaction of these stress and strain fields determines the porosity evolution. In some cases analysed, the porosity is present initially in the metal matrix, while in other cases voids nucleate gradually during the deformation process. It is found that interaction with the neighbouring voids reduces the critical stress for unstable cavity growth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.