Abstract

Lava domes pose a significant hazard to infrastructure, human lives and the environment when they collapse. Their stability is partly dictated by internal mechanical properties. Here, we present a detailed investigation into the lithology and composition of a 23%) rocks show low rock strength (< 41 MPa) and dominantly ductile failure, whereas lower porosity rocks (5–23%) exhibit higher measured rock strengths (up to 278 MPa) and brittle failure. Groundmass crystallinity, porosity and rock strength are intercorrelated. High groundmass crystal content is inversely related to low porosity, implying crystallisation and degassing of a slowly undercooled magma that experienced rheological stiffening under high pressures deeper within the conduit. This is linked to a slow magma ascent rate and results in a lava dome with higher rock strength. Samples with low groundmass crystallinity are associated with higher porosity and lower rock strength, and represent magma that ascended more rapidly, with faster undercooling, and solidification in the upper conduit at low pressures. Our experimental results show that the inherent strength of rocks within a growing dome may vary considerably depending on ascent/emplacement rates, thus significantly affecting dome stability and collapse hazards.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call