Abstract

This work presents a theoretical method for surface love waves in poroelastic media loaded with a viscous fluid. A complex analytic form of the dispersion equation of surface love waves has been developed using an original resolution based on pressure–displacement formulation. The obtained complex dispersion equation was separated in real and imaginary parts. mathematica software was used to solve the resulting nonlinear system of equations. The effects of surface layer porosity and fluid viscosity on the phase velocity and the wave attenuation dispersion curves are inspected. The numerical solutions show that the wave attenuation and phase velocity variation strongly depend on the fluid viscosity, surface layer porosity, and wave frequency. To validate the original theoretical resolution, the results in literature in the case of an homogeneous isotropic surface layer are used. The results of various investigations on love wave propagation can serve as benchmark solutions in design of fluid viscosity sensors, in nondestructive testing (NDT) and geophysics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.