Abstract

Improving the impact energy dissipation capacity of functionally graded brittle materials through pore design will help avoid or delay failure. In order to improve the impact energy dissipation capacity of functionally graded brittle materials, pores with specific shapes can be implanted inside them. The effect of pore shape on the impact properties of functionally graded brittle materials was investigated using a lattice-spring model that can quantitatively represent the mechanical properties of functionally graded brittle materials. The calculated results show that the pores with negative Poisson’s ratio such as inner-concave triangle, fourth-order star, and inner-concave hexagon are easy to collapse under the impact, while the square and square-hexagon pores have the strongest resistance to deformation. For all seven pore shapes, the Hugoniot elastic limit of the samples decreased gradually with increasing porosity, and the Hugoniot elastic limit did not change with the change of piston velocity. The propagation velocity of the deformation wave increases with the piston velocity and the velocity of the particle corresponding to the Hugoniot state behind the deformation wave increases accordingly. The principle that pores can enhance the macroscopic impact energy dissipation capacity of functionally graded brittle material samples revealed in this paper will contribute to the prevention of sample impact failure and provide guidance for the optimal design of impact kinetic properties of samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.