Abstract
In this paper, experimental investigations were carried out to observe the melting process of a bio-based nano-phase change materials (PCM) inside open-cell metal foams. Copper oxide nanoparticles with five different weight fractions (i.e., 0.00%, 0.08%, 0.10%, 0.12%, and 0.30%) were dispersed into bio-based PCM (i.e., coconut oil) to synthesize nano-PCMs. Open-cell aluminum foams of different porosities (i.e., 0.96, 0.92, and 0.88) and pore densities (i.e., 5, 10, and 20 pores per inch (PPI)) were considered. An experimental setup was constructed to monitor the progression of the melting process and to measure transient temperatures variations at different selected locations. Average thermal energy storage rate (TESR) was calculated, alongside the melting time was recorded. The effects of various nanoparticles concentration, metal foam pore densities, porosities, and isothermal surface temperature on the melting time, TESR, thermal energy distribution, and the melting behavior were studied. It was observed that the melting time significantly reduced by using metal foam and increasing the isothermal surface temperature. It was concluded that the effect of adding nanoparticles on the TESR depends on the characteristics of metal foam, as well as, the weight fractions of nanoparticles. The change in TESR varied from −1% to 8.6% upon addition of 0.10 wt % nanoparticles compared to pure PCM, whereas the increase in the nanoparticles concentration from 0.10% to 0.30% changed TESR by −10.6% to 4.5%. The results provide an insight into the interdependencies of parameters such as pore density and porosity of metal foam and nanoparticles concentration on the melting process of nano-PCM in metal foam.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Thermal Science and Engineering Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.