Abstract

This study reports on titanium (Ti) foams produced using the powder metallurgy technique. During the investigation, the cross-sectional area and perimeter distributions of the pores within the foam were measured. Metallographic image processing analysis software combined with scanning electron microscopic images demonstrated that the pore size and circularity were affected by varying the volume percentage of the space-holder material. The corrosion resistance was investigated using electrochemical impedance spectroscopy and cyclic polarization tests. MG-63 osteoblast-like cells were used to study the biocompatibility and to evaluate the cell attachment, viability, and alkaline phosphatase activity. Analytical results indicated that 50 and 60 vol.% samples were suitable for biomedical applications. Because of the high degree of interconnectivity in the 60 and 70% porosity samples, the electrochemical parameters produced similar results. The corrosion rate of the porous samples showed that the amount of dissolved Ti was at an acceptable level that can be ejected by the body. Applying a fluoridated hydroxyapatite coating significantly increased the osteoblast cell functions on the porous surface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call