Abstract

ABSTRACTFoamability, liquid holdup, and foam appearance are key factors that determine dust control efficiencies. As the foam production method of the FoamScan instrument is similar to foaming device used for dust control, and its measurement means can satisfy the requirements of precise measuring, the FoamScan technology is adopted to explore the influence of xanthan gum (XG) and partial hydrolytic polyacrylamide (HPAM) on dust-related foam properties of sodium dodecyl benzene sulfonate (SDBS). It was found that with the increase of the polymer mass fraction, the liquid volume in the foam gradually increased. Additionally, the foaming time t200 of the foaming agent decreased at first, then remained almost constant for both polymers, which indicated that the foamability and liquid holdup were enhanced by the addition of polymers into SDBS. In addition, the efficiencies of XG are higher than that of HPAM. The image analysis using the CSA software revealed that the mean radius formed by XG was smaller than that by HPAM and the number of bubbles was larger with XG than with HPAM. Thus, the XG foam has more area to contact with dust and could control dust better. The highly branched molecular structure and hydrogen bonds formed by XG played important roles in dust-related foam properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.