Abstract

The translocation of a bond fluctuation polymer through an interacting nanopore is studied using dynamic Monte Carlo simulation. A driving force F is applied only for monomers inside the pore. The influence of polymer-pore interaction on the scaling relation τ~N(α) is studied for both unbiased and biased translocations, with τ the translocation time and N the polymer length. Results show that the exponent α is dependent on the polymer-pore interaction. For a noninteracting pore, we find α=2.48 for unbiased translocation and α=1.35 for strong biased translocation; for strong attraction, we find α=2.35 for unbiased translocation and α=1.22 for strong biased translocation. The unbiased translocation corresponds to the low-NF regime whereas the strong biased translocation corresponds to the high-NF regime.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call